

Learn to Code

HTML & CSS
Develop & Style Websites

Shay Howe

LEARN TO CODE HTML & CSS: DEVELOP & STYLE WEBSITES
Shay Howe

NEW RIDERS
www.newriders.com

To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education.
Copyright © 2014 by W. Shay Howe

Project Editors: Michael J. Nolan and Nancy Peterson
Development Editor: Jennifer Lynn
Production Editor: David Van Ness
Copyeditor: Jennifer Needham
Technical Editor: Chris Mills
Indexer: Karin Arrigoni
Proofreader: Darren Meiss
Cover Designer: Shay Howe
Interior Designer: Mimi Heft
Compositor: WolfsonDesign

NOTICE OF RIGHTS
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

NOTICE OF LIABILITY
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person
or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instruc-
tions contained in this book or by the computer software and hardware products described in it.

TRADEMARKS
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services identified
throughout this book are used in editorial fashion only and for the benefit of such companies with no intention of
infringement of the trademark. No such use, or the use of any trade name, is intended to convey endorsement or
other affiliation with this book.

ISBN 13: 978-0-321-94052-0
ISBN 10: 978-0-321-94052-0

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.newriders.com

For you.

One way or another this book ended up in your hands. I’m excited to
see what you do with it, and I hope the knowledge within this book
makes as large an impact on your life as it has on my own.

About the Author
Born and raised in the small town of Lima, Ohio, Shay Howe grew up disas-
sembling remote controls and other electronics in hopes of learning how they
worked. When the Internet was introduced, he was fascinated and immediately
began learning all he could about it. Upon graduating from high school, he moved
to Tempe, Arizona, where he attended the University of Advancing Technology
and received a Bachelor of Arts degree in digital multimedia with a focus in
web design.

Currently living in Chicago, Illinois, Shay is a designer and front-end developer with a passion for
solving problems while building creative and intuitive websites. He specializes in web and product
design and front-end development, specialties that he regularly writes and speaks about.

Shay is co-founder of Chicago Camps, which hosts low-cost, high-value technology events in the
Chicago area. He is also co-organizer of Refresh Chicago and UX Happy Hour, which help to refresh
the creative, technical, and professional culture of New Media endeavors.

Perhaps most importantly, though, Shay is the undisputed office table tennis champion.

Acknowledgments
To everyone who helped make this book a reality, from the bottom of my heart, I cannot thank
you enough!

There are so many people who have helped me in my career and with this book that it’s going to
be impossible to thank them all. I will undoubtedly forget someone important, and I apologize to
whoever that may be. That said, I have to begin by thanking my family and friends. There’s no way
this book would ever exist without their help and support.

My wife, Becky, was encouraging from day one and has always been supportive of my endeavors,
no matter if they seemed like good ideas or not. Our pup, Gatsby, who makes me smile every day,
kept my feet warm all winter while I was writing, using them as his bed under my desk. All of the
thanks in the world would not be enough for my parents, Wes and Deb, who have provided me with
more support and guidance than I could have ever dreamed. I love them all.

Before this was a book it was a website, and that website received feedback from some of the best
in the business. I’m incredibly thankful to Jeff Cohen, Mike Gibson, Scott Robbin, Christopher Webb,
Russell Schoenbeck, Dan Kim, Chris Mills, Bruce Lawson, Christian Heilmann, and many others for
their initial feedback on these lessons. Of course the website itself wouldn’t have existed without
the help of Darby Frey, who has had my back for years and is easily one of the best guys I know.

iv

 v

I tapped on quite a few friends for content for this book, and I was overwhelmed by all of their
contributions. I owe two-handed high fives to Aaron Irizarry, Adam Connor, AJ Self, Arman Ghosh,
Bermon Painter, Brad Smith, Candi Lemoine, Carolyn Chandler, Chris Mills, Dan Denney, Darby Frey,
Erica Decker, Estelle Weyl, Jen Myers, Jenn Downs, Jennifer Jones, Leslie Jensen-Inman, Maya Bruck,
Russ Unger, Tessa Harmon, Victoria Pater, Vitaly Friedman, and Zoe Mickley Gillenwater. Next time
I see each of them the high fives are payable in full, and dinner is on me.

I owe a ton of thanks to the New Riders family who helped bring this all together. Michael Nolan
eased my fear of writing a book and gave me a gracious introduction to New Riders. Jennifer Lynn
deserves an award for keeping this book on track and helping make sense of the content within it.
Chris Mills did a fantastic job of making sure all of the right topics were covered in an understand-
able manner. Jennifer Needham put my words to work, making me sound better than I ever imagined.
Mimi Heft always went the extra mile and was incredibly patient with me. Nancy Peterson handled
every request I threw at her with ease and kept the entire team on the same page. They’re all
superheroes in my eyes, and they made writing this book an amazing experience.

Much of the content within this book has been heavily influenced by those who have written books
and publications before me, and who continue to be thought leaders within the industry. Without
the contributions of Jeffrey Zeldman, Eric Meyer, Dan Cederholm, Dave Shea, Andy Budd, Jeremy
Keith, Cameron Moll, Ethan Marcotte, Chris Coyier, and others, it’s hard to say what I’d know.

Today the Mozilla Developer Network and Dev.Opera communities are publishing some of best
content on HTML and CSS; they have become staples within a long list of great resources. They
must be thanked, too, for their amazing contributions.

When not in the office I do my best to stay involved in the community, and to that end I help
organize a handful of different events in the Chicago area. While writing this book I fell behind on
my duties, and I must thank Russ Unger and Brad Simpson from Chicago Camps and Jon Buda and
Anthony Zinni from Refresh Chicago for picking up my slack. They all helped to carry my portion of
the work without hesitation, and I’m thankful and honored to have them as partners in crime.

Many people have generously offered words of wisdom and lent an ear from time to time. For that,
I must thank Bill DeRouchey, Bill Scott, Brad Wilkening, Braden Kowitz, Brandon Satrom, Carl Smith,
Chris Courtney, Chris Eppstein, Crystal Shuller, Dale Sande, Dave Giunta, Dave Hoover, Debra Levin
Gelman, Derek Featherstone, Dustin Anderson, Fabian Alcantara, Greg Baugues, Hampton Catlin,
Jack Toomey, Jason Kunesh, Jason Ulaszek, JC Grubbs, Jim and Jen Remsik, Jonathan Snook, Keith
Norman, Luis D. Rodriguez, Michael Boeke, Michael “Doc” Norton, Michael Parenteau, Milton
Jackson, Nishant Kothary, Peter Merholz, Sam Rosen, Samantha Soma, Tim Frick, Todd Larsen, and
Todd Zaki Warfel.

Last, but certainly not least, I must thank the late Matt Puchlerz. He taught me more than he’ll ever
know, and I wouldn’t be where I am today without him. I am forever grateful for Matt’s friendship,
and I miss him dearly.

vi Learn to Code HTML & CSS

Contents
Introduction . x

LESSON 1 Building Your First Web Page 1
What Are HTML & CSS? . 2

Understanding Common HTML Terms . 2

Setting Up the HTML Document Structure . 4

Understanding Common CSS Terms . 7

Working with Selectors . 9

Referencing CSS. 11

Using CSS Resets . 12

Summary . 16

LESSON 2 Getting to Know HTML 17
Semantics Overview . 18

Identifying Divisions & Spans. . 18

Using Text-Based Elements . 20

Building Structure. 23

Creating Hyperlinks . 29

Summary . 35

LESSON 3 Getting to Know CSS 36
The Cascade . 37

Calculating Specificity . 38

Combining Selectors . 40

Layering Styles with Multiple Classes. 42

Common CSS Property Values . 44

Summary . 52

LESSON 4 Opening the Box Model 53
How Are Elements Displayed? . 54

What Is the Box Model? . 56

Working with the Box Model . 56

Developer Tools . 67

Summary . 73

LESSON 5 Positioning Content 74
Positioning with Floats. 75

Positioning with Inline-Block . 87

Creating Reusable Layouts . 90

Uniquely Positioning Elements . 95

Summary . 98

LESSON 6 Working with Typography 99
Adding Color to Text . 100

Changing Font Properties . 101

Applying Text Properties . 113

Using Web-Safe Fonts . 123

Embedding Web Fonts . 124

Including Citations & Quotes . 128

Summary . 131

LESSON 7 Setting Backgrounds & Gradients 132
Adding a Background Color . 133

Adding a Background Image . 134

Designing Gradient Backgrounds . 142

Using Multiple Background Images . 152

Exploring New Background Properties . 153

Summary . 156

Contents vii

viii Learn to Code HTML & CSS

LESSON 8 Creating Lists 157
Unordered Lists . 158

Ordered Lists . 158

Description Lists . 160

Nesting Lists . 162

List Item Styling . 163

Horizontally Displaying List. 166

Summary . 176

LESSON 9 Adding Media 178
Adding Images . 179

Adding Audio . 189

Adding Video . 191

Adding Inline Frames . 193

Semantically Identifying Figures & Captions. 201

Summary . 203

LESSON 10 Building Forms 204
Initializing a Form. 205

Text Fields & Textareas. 205

Multiple Choice Inputs & Menus. 208

Form Buttons . 211

Other Inputs . 212

Organizing Form Elements . 212

Form & Input Attributes . 215

Login Form Example . 217

Summary . 228

 ix

LESSON 11 Organizing Data with Tables 229
Creating a Table. 230

Table Structure . 234

Table Borders . 238

Table Striping . 242

Aligning Text . 244

Completely Styled Table . 248

Summary . 265

LESSON 12 Writing Your Best Code 266
HTML Coding Practices . 267

CSS Coding Practices. . 273

Summary . 281

Index . 282

x Learn to Code HTML & CSS

Introduction

I come from a family of educators. My parents are both teachers, as is my brother. I was
the only one in my family not to become a teacher. That said, I love helping others, spread-
ing the knowledge I have about web design, and teaching when possible. To that end, I often
speak at different conferences and schools, as well as host the occasional workshop. When
doing so, I continually receive questions about HTML and CSS. So, I wrote this book to be
that ideal, all-encompassing resource for learning HTML and CSS.

Traditionally, you’ll see books that teach HTML first and then CSS, keeping the two lan-
guages completely separate. But when they’re taught independently, things don’t really
come together until the very end, which is frustrating for someone new to HTML and
CSS. I wanted to take a different approach, teaching both languages at the same time so
that you can see the fruits of your labor sooner rather than later. This book aims to bring
instant gratification to the web design process.

It was also important to me that the book be project based, providing a completed website
for readers who work through the book from start to finish. Not everyone learns by read-
ing alone, so I wanted to provide a tangible website to allow people to learn experientially.

And let’s face it, HTML and CSS can be a little daunting at first. After all, the languages are
ever changing, and the evolution requires a steady stream of up-to-date material. This
book is written in a workshop-style format, with 12 easy-to-digest lessons. Starting with
the basics, each lesson builds upon the previous one and breaks down the barriers to entry,
showing you how you can start writing HTML and CSS today in practical examples. In fact,
you build a simple web page in the first lesson. Then, in subsequent lessons, you learn not
only how to make this web page more robust, but also how to create additional design-
savvy and interactive web pages that, when combined, form an entire functional website.

Learn to Code HTML & CSS covers the latest technologies as well as the foundations of
HTML and CSS that were set years ago. It also covers a range of topics and skills, from
beginning to advanced. So if you’re looking to become a web designer or developer and
you want to learn HTML and CSS, then this book is for you.

Lesson 4

Opening the Box Model

We’ve familiarized ourselves with HTML and CSS; we know

what they look like and how to accomplish some of the basics.

Now we’re going to go a bit deeper and look at exactly how

elements are displayed on a page and how they are sized.

In the process we’ll discuss what is known as the box model

and how it works with HTML and CSS. We’re also going to look

at a few new CSS properties and use some of the length values

we covered in Lesson 3. Let’s begin.

54 Learn to Code HTML & CSS

How Are Elements Displayed?
Before jumping into the box model, it helps to understand how elements are displayed.
In Lesson 2 we covered the difference between block-level and inline-level elements. To
quickly recap, block-level elements occupy any available width, regardless of their content,
and begin on a new line. Inline-level elements occupy only the width their content requires
and line up on the same line, one after the other. Block-level elements are generally used
for larger pieces of content, such as headings and structural elements. Inline-level elements
are generally used for smaller pieces of content, such as a few words selected to be bold
or italicized.

Display
Exactly how elements are displayed—as block-level elements, inline elements, or some-
thing else—is determined by the display property. Every element has a default display
property value; however, as with all other property values, that value may be overwritten.
There are quite a few values for the display property, but the most common are block,
inline, inline-block, and none.

We can change an element’s display property value by selecting that element within
CSS and declaring a new display property value. A value of block will make that ele-
ment a block-level element.

1. p {

2. display: block;

3. }

A value of inline will make that element an inline-level element.

1. p {

2. display: inline;

3. }

Lesson 4 · Opening the Box Model 55

Things get interesting with the inline-block value. Using this value will allow an element
to behave as a block-level element, accepting all box model properties (which we’ll cover
soon). However, the element will be displayed in line with other elements, and it will not
begin on a new line by default.

1. p {

2. display: inline-block;

3. }

Figure 4.1 Three paragraphs displayed as inline-block elements, sitting one
right next to the other in a horizontal line

The Space Between Inline-Block Elements

One important distinction with inline-block elements is that they are not always touching,
or displayed directly against one another. Usually a small space will exist between two
inline-block elements. This space, though perhaps annoying, is normal. We’ll discuss why
this space exists and how to remove it in the next lesson.

Lastly, using a value of none will completely hide an element and render the page as if
that element doesn’t exist. Any elements nested within this element will also be hidden.

1. div {

2. display: none;

3. }

Knowing how elements are displayed and how to change their display is fairly impor-
tant, as the display of an element has implications on how the box model is rendered.
As we discuss the box model, we’ll be sure to look at these different implications and how
they can affect the presentation of an element.

56 Learn to Code HTML & CSS

What Is the Box Model?
According to the box model concept, every element on a page is a rectangular box and
may have width, height, padding, borders, and margins (see Figure 4.2).

That’s worth repeating: Every element on a page is a rectangular box.

Figure 4.2 When we look
at each element individually,
we can see how they are all
rectangular, regardless of their
presented shapes

Every element on every page conforms to the box model, so it’s incredibly important. Let’s
take a look at it, along with a few new CSS properties, to better understand what we are
working with.

Working with the Box Model
Every element is a rectangular box, and there are several properties that determine the
size of that box. The core of the box is defined by the width and height of an element,
which may be determined by the display property, by the contents of the element, or
by specified width and height properties. padding and then border expand the dimen-
sions of the box outward from the element’s width and height. Lastly, any margin we
have specified will follow the border.

Each part of the box model corresponds to a CSS property: width, height, padding,
border, and margin.

Let’s look these properties inside some code:

1. div {

2. border: 6px solid #949599;

3. height: 100px;

Lesson 4 · Opening the Box Model 57

4. margin: 20px;

5. padding: 20px;

6. width: 400px;

7. }

According to the box model, the total width of an element can be calculated using the
following formula:

margin-right + border-right + padding-right + width + padding-left +

border-left + margin-left

In comparison, according to the box model, the total height of an element can be calcu-
lated using the following formula:

margin-top + border-top + padding-top + height + padding-bottom +

border-bottom + margin-bottom

20 6 20 400 x 100

Margin

Border

Padding

20

6

20

20

6

20

20 6 20

Figure 4.3 The box model broken down, including a base height and width plus paddings, borders,
and margins

Using the formulas with the box shown in Figure 4.3, we can find the total height and
width of our example.

• Width: 492px = 20px + 6px + 20px + 400px + 20px + 6px + 20px

• Height: 192px = 20px + 6px + 20px + 100px + 20px + 6px + 20px

58 Learn to Code HTML & CSS

The box model is without question one of the more confusing parts of HTML and CSS.
We set a width property value of 400 pixels, but the actual width of our element is 492
pixels. By default the box model is additive; thus to determine the actual size of a box we
need to take into account padding, borders, and margins for all four sides of the box. Our
width not only includes the width property value, but also the size of the left and right
padding, left and right borders, and left and right margins.

So far a lot of these properties might not make a whole lot of sense, and that’s all right.
To clarify things, let’s take a close look at all of the properties—width, height, padding,
border, and margin—that go into forming the box model.

Width & Height
Every element has default width and height. That width and height may be 0 pixels, but
browsers, by default, will render every element with size. Depending on how an element
is displayed, the default height and width may be adequate. If an element is key to the
layout of a page, it may require specified width and height property values. In this case,
the property values for non-inline elements may be specified.

Width
The default width of an element depends on its display value. Block-level elements have
a default width of 100%, consuming the entire horizontal space available. Inline and
inline-block elements expand and contract horizontally to accommodate their content.
Inline-level elements cannot have a fixed size, thus the width and height properties are
only relevant to non-inline elements. To set a specific width for a non-inline element, use
the width property:

1. div {

2. width: 400px;

3. }

Lesson 4 · Opening the Box Model 59

Height
The default height of an element is determined by its content. An element will expand
and contract vertically as necessary to accommodate its content. To set a specific height
for a non-inline element, use the height property:

1. div {

2. height: 100px;

3. }

Sizing Inline-Level Elements

Please keep in mind that inline-level elements will not accept the width and height
properties or any values tied to them. Block and inline-block elements will, however,
accept the width and height properties and their corresponding values.

Margin & Padding
Depending on the element, browsers may apply default margins and padding to an element
to help with legibility and clarity. We will generally see this with text-based elements.
The default margins and padding for these elements may differ from browser to browser
and element to element. In Lesson 1 we discussed using a CSS reset to tone all of these
default values down to zero. Doing so allows us to work from the ground up and to
specify our own values.

Margin

The margin property allows us to set the amount of space that surrounds an element.
Margins for an element fall outside of any border and are completely transparent in color.
Margins can be used to help position elements in a particular place on a page or to pro-
vide breathing room, keeping all other elements a safe distance away. Here’s the margin
property in action:

1. div {

2. margin: 20px;

3. }

60 Learn to Code HTML & CSS

One oddity with the margin property is that vertical margins, top and bottom, are not
accepted by inline-level elements. These vertical margins are, however, accepted by
block-level and inline-block elements.

Padding

The padding property is very similar to the margin property; however, it falls inside of
an element’s border, should an element have a border. The padding property is used to
provide spacing directly within an element. Here’s the code:

1. div {

2. padding: 20px;

3. }

The padding property, unlike the margin property, works vertically on inline-level elements.
This vertical padding may blend into the line above or below the given element, but it will
be displayed.

Margin & Padding on Inline-Level Elements

Inline-level elements are affected a bit differently than block and inline-block elements
when it comes to margins and padding. Margins only work horizontally—left and
right—on inline-level elements. Padding works on all four sides of inline-level elements;
however, the vertical padding—the top and bottom—may bleed into the lines above
and below an element.

Margins and padding work like normal for block and inline-block elements.

Margin & Padding Declarations

In CSS, there is more than one way to declare values for certain properties. We can use
longhand, listing multiple properties and values one after the other, in which each value
has its own property. Or we can use shorthand, listing multiple values with one property.
Not all properties have a shorthand alternative, so we must make sure we are using the
correct property and value structure.

Lesson 4 · Opening the Box Model 61

The margin and padding properties come in both longhand and shorthand form. When
using the shorthand margin property to set the same value for all four sides of an element,
we specify one value:

1. div {

2. margin: 20px;

3. }

To set one value for the top and bottom and another value for the left and right sides of
an element, specify two values: top and bottom first, then left and right. Here we are
placing margins of 10 pixels on the top and bottom of a <div> and margins of 20 pixels
on the left and right:

1. div {

2. margin: 10px 20px;

3. }

To set unique values for all four sides of an element, specify those values in the order
of top, right, bottom, and left, moving clockwise. Here we are placing margins of 10
pixels on the top of a <div>, 20 pixels on the right, 0 pixels on the bottom, and 15 pixels
on the left.

1. div {

2. margin: 10px 20px 0 15px;

3. }

Using the margin or padding property alone, with any number of values, is considered
shorthand. With longhand, we can set the value for one side at a time using unique
properties. Each property name (in this case margin or padding) is followed by a dash
and the side of the box to which the value is to be applied: top, right, bottom, or left.
For example, the padding-left property accepts only one value and will set the left
padding for that element; the margin-top property accepts only one value and will set
the top margin for that element.

1. div {

2. margin-top: 10px;

3. padding-left: 6px;

4. }

62 Learn to Code HTML & CSS

When we wish to identify only one margin or padding value, it is best to use the long-
hand properties. Doing so keeps our code explicit and helps us to avoid any confusion
down the road. For example, did we really want to set the top, right, and left sides of
the element to have margins of 0 pixels, or did we really only want to set the bottom mar-
gin to 10 pixels? Using longhand properties and values here helps to make our intentions
clear. When dealing with three or more values, though, shorthand is incredibly helpful.

Margin & Padding Colors

The margin and padding properties are completely transparent and do not accept any
color values. Being transparent, though, they show the background colors of relative ele-
ments. For margins, we see the background color of the parent element, and for padding,
we see the background color of the element the padding is applied to.

Borders
Borders fall between the padding and margin, providing an outline around an element.
The border property requires three values: width, style, and color. Shorthand values
for the border property are stated in that order—width, style, color. In longhand, these
three values can be broken up into the border-width, border-style, and border-color
properties. These longhand properties are useful for changing, or overwriting, a single
border value.

The width and color of borders can be defined using common CSS units of length and
color, as discussed in Lesson 3.

Borders can have different appearances. The most common style values are solid,
double, dashed, dotted, and none, but there are several others to choose from.

Here is the code for a 6-pixel-wide, solid, gray border that wraps around all four sides of
a <div>:

1. div {

2. border: 6px solid #949599;

3. }

Lesson 4 · Opening the Box Model 63

Figure 4.4 Different border sizes and styles

Individual Border Sides

As with the margin and padding properties, borders can be placed on one side of an ele-
ment at a time if we’d like. Doing so requires new properties: border-top, border-right,
border-bottom, and border-left. The values for these properties are the same as
those of the border property alone: width, style, and color. If we want, we can make a
border appear only on the bottom of an element:

1. div {

2. border-bottom: 6px solid #949599;

3. }

Additionally, styles for individual border sides may be controlled at an even finer level.
For example, if we wish to change only the width of the bottom border we can use the
following code:

1. div {

2. border-bottom-width: 12px;

3. }

These highly specific longhand border properties include a series of hyphen-separated
words starting with the border base, followed by the selected side—top, right, bottom,
or left—and then width, style, or color, depending on the desired property.

Border Radius

While we’re looking at borders and their different properties, we need to examine the
border-radius property, which enables us to round the corners of an element.

The border-radius property accepts length units, including percentages and pixels, that
identify the radius by which the corners of an element are to be rounded. A single value
will round all four corners of an element equally; two values will round the top-left/
bottom-right and top-right/bottom-left corners in that order; four values will round
the top-left, top-right, bottom-right, and bottom-left corners in that order.

2px
solid

6px
double

8px
dashed

4px
dotted

64 Learn to Code HTML & CSS

When considering the order in which multiple values are applied to the border-radius

property (as well as the margin and padding properties), remember that they move in a
clockwise fashion starting at the top left of an element.

1. div {

2. border-radius: 5px;

3. }

Figure 4.5
Different border-radius sizes

The border-radius property may also be broken out into longhand properties that allow
us to change the radii of individual corners of an element. These longhand properties
begin with border, continue with the corner’s vertical location (top or bottom) and the
corner’s horizontal location (left or right), and then end with radius. For example, to
change the top-right corner radius of a <div>, the border-top-right-radius property
can be used.

1. div {

2. border-top-right—radius: 5px;

3. }

Box Sizing
Until now the box model has been an additive design. If you set the width of an element
to 400 pixels and then add 20 pixels of padding and a border of 10 pixels on every side,
the actual full width of the element becomes 460 pixels. Remember, we need to add the
width, padding, and border property values together to get the actual, full width of an
element.

The box model may, however, be changed to support different calculations. CSS3 intro-
duced the box-sizing property, which allows us to change exactly how the box model
works and how an element’s size is calculated. The property accepts three primary values—
content-box, padding-box, and border-box—each of which has a slightly different
impact on how the box size is calculated.

5px 50% 15px 75px

Lesson 4 · Opening the Box Model 65

Content Box

The content-box value is the default value, leaving the box model as an additive design.
If we don’t use the box-sizing property, this will be the default value for all elements.
The size of an element begins with the width and height properties, and then any padding,
border, or margin property values are added on from there.

1. div {

2. -webkit-box-sizing: content-box;

3. -moz-box-sizing: content-box;

4. -moz-box-sizing: content-box;

5. }

Browser-Specific Properties & Values

What are all those hyphens and letters on the box-sizing property?

As CSS3 was introduced, browsers gradually began to support different properties and
values, including the box-sizing property, by way of vendor prefixes. As parts of the
CSS3 specification are finalized and new browser versions are released, these vendor
prefixes become less and less relevant. As time goes on, vendor prefixes are unlikely
to be a problem; however, they still provide support for some of the older browsers that
leveraged them. We may run across them from time to time, and we may even want to
use them should we wish to support older browsers.

Vendor prefixes may be seen on both properties and values, all depending on the CSS
specification. Here they are shown on the box-sizing property. Browser vendors were
free to chose when to use a prefix and when not to. Thus, some properties and values
require vendor prefixes for certain browser vendors but not for others.

Moving forward, when a property or value needs a vendor prefix, the prefix will only be
used in the introduction of that property or value (in the interest of keeping our code
digestible and concise). Do not forget to add the necessary vendor prefixes when you’re
actually writing the code.

For reference, the most common vendor prefixes are outlined here:

• Mozilla Firefox: -moz-

• Microsoft Internet Explorer: -ms-

• Webkit (Google Chrome and Apple Safari): -webkit-

66 Learn to Code HTML & CSS

Padding Box

The padding-box value alters the box model by including any padding property values
within the width and height of an element. When using the padding-box value, if an
element has a width of 400 pixels and a padding of 20 pixels around every side, the actual
width will remain 400 pixels. As any padding values increase, the content size within an
element shrinks proportionately.

If we add a border or margin, those values will be added to the width or height properties
to calculate the full box size. For example, if we add a border of 10 pixels and a padding
of 20 pixels around every side of the element with a width of 400 pixels, the actual full
width will become 420 pixels.

1. div {

2. box-sizing: padding-box;

3. }

Border Box

Lastly, the border-box value alters the box model so that any border or padding property
values are included within the width and height of an element. When using the border-box
value, if an element has a width of 400 pixels, a padding of 20 pixels around every side,
and a border of 10 pixels around every side, the actual width will remain 400 pixels.

If we add a margin, those values will need to be added to calculate the full box size. No
matter which box-sizing property value is used, any margin values will need to be
added to calculate the full size of the element.

1. div {

2. box-sizing: border-box;

3. }

border-box

padding-box

content-box Figure 4.6
Different box-
sizing values
allow the width of
an element—and
its box—to be
calculated from
different areas

Lesson 4 · Opening the Box Model 67

Picking a Box Size

Generally speaking, the best box-sizing value to use is border-box. The border-box
value makes our math much, much easier. If we want an element to be 400 pixels wide, it
is, and it will remain 400 pixels wide no matter what padding or border values we add to it.

Additionally, we can easily mix length values. Say we want our box to be 40% wide. Add-
ing a padding of 20 pixels and a border of 10 pixels around every side of an element
isn’t difficult, and we can still guarantee that the actual width of our box will remain 40%
despite using pixel values elsewhere.

The only drawback to using the box-sizing property is that as part of the CSS3 specifi-
cation, it isn’t supported in every browser; it especially lacks support in older browsers.
Fortunately this is becoming less and less relevant as new browsers are released. Chances
are we’re safe to use the box-sizing property, but should we notice any issues, it’s worth
looking into which browser those issues are occurring with.

Developer Tools
Most browsers have what are known as Developer Tools. These tools allow us to inspect
an element on a page, see where that element lives within the HTML document, and see
what CSS properties and values are being applied to it. Most of these tools also include a
box model diagram to show the computed size of an element.

To see the Developer Tools in Google Chrome, click “View” within the menu bar and navi-
gate to “Developer” and then “Developer Tools.” This loads a drawer at the bottom of the
browser window that provides a handful of tools for inspecting our code.

Clicking the magnifying glass at the bottom of this drawer enables us to hover over and
then click on different elements on the page to review more information about them.
After selecting an element, we’ll see a handful of tabs on the right-hand side of the Ele-
ments panel within our Developer Tools. Selecting the “Computed” tab will show us a
breakdown of the box model for our selected element.

Play around with the Developer Tools, be it in Google Chrome, Mozilla Firefox, Apple
Safari, or other browsers; there is much to learn from looking at our code. I generally leave
the Developer Tools open at all times when writing HTML and CSS. And I frequently
inspect the code of other websites to see how they are built, too.

68 Learn to Code HTML & CSS

Figure 4.7 The Google Chrome Developer Tools, which help us to inspect the HTML and CSS on any page

The box model is one of the most confusing parts of learning how to write HTML and CSS.
It is also one of the most powerful parts of HTML and CSS, and once we have it mastered,
most everything else—like positioning content—will come to us fairly easily.

In Practice
Let’s jump back into our Styles Conference website to center it on the page and add some
more content.

1. Let’s start by adjusting our box size to use the border-box version of the box model,
which will make sizing all of our elements much easier. Within our main.css file, just
below our reset, let’s add a comment to identify the code for what will become our
grid and help determine the layout of our website. We’re putting this below our reset
so that it falls in the proper position within the cascade.

From there, we can use the universal selector, *, along with universal pseudo-elements,
*:before and *:after, to select every imaginable element and change the box-sizing
to border-box. Remember, we’re going to want to include the necessary vendor
prefixes for the box-sizing property, as it is a relatively new property.

1. /*

2. ==

3. Grid

4. ==

5. */

6.

7. *,

8. *:before,

Lesson 4 · Opening the Box Model 69

9. *:after {

10. -webkit-box-sizing: border-box;

11. -moz-box-sizing: border-box;

12. -moz-box-sizing: border-box;

13. }

2. Next we’ll want to create a class that will serve as a container for our elements. We
can use this container class on different elements to set a common width, center
the elements on the page, and apply some common horizontal padding.

Just below our universal selector rule set, let’s create a selector with a class of
container. Within this selector let’s set our width to 960 pixels, our left and
right padding to 30 pixels, our top and bottom margins to 0, and our left and
right margins to auto.

Setting a width tells the browser definitively how wide any element with the class of
container should be. Using a left and right margin of auto in conjunction with
this width lets the browser automatically figure out equal left and right margins
for the element, thus centering it on the page. Lastly, the left and right padding
ensures that our content isn’t sitting directly on the edge of the element and provides
a little breathing room for the content.

1. .container {

2. margin: 0 auto;

3. padding-left: 30px;

4. padding-right: 30px;

5. width: 960px;

6. }

3. Now that we have a container class available to use, let’s go ahead and apply the
class of container throughout our HTML to the <header> and <footer> elements
on each page, including the index.html, speakers.html, schedule.html, venue.
html, and register.html files.

1. <header class="container">...</header>

2.

3. <footer class="container">...</footer>

4. While we’re at it, let’s go ahead and center the rest of the content on our pages.
On the home page, our index.html file, let’s add the class of container to each
<section> element on the page, one for our hero section (the section that introduces
our conference) and one for our teasers section.

1. <section class="container">...</section>

70 Learn to Code HTML & CSS

Additionally, let’s wrap all of the <h1> elements on each page with a <section>
element with the class of container.

1. <section class="container">

2.

3. <h1>...</h1>

4.

5. </section>

We’ll come back and adjust these elements and classes later, but for now we’re
headed in the right direction.

5. Now that all of our content is centered, let’s create some vertical spacing between
elements. For starters let’s place a 22-pixel bottom margin on a few of our heading
and paragraph elements. We’ll place and comment on these typography styles below
our grid styles.

1. /*

2. ==

3. Typography

4. ==

5. */

6.

7. h1, h3, h4, h5, p {

8. margin-bottom: 22px;

9. }

We intentionally skipped <h2> and <h6> elements, as the design does not call for
margins on <h2> elements and as we won’t be using any <h6> elements at this time.

6. Let’s also try our hand at creating a border and some rounded corners. We’ll start by
placing a button within the top <section> element on our home page, just below
the header.

Previously we added an <a> element within this <section> element. Let’s add the
classes of btn and btn-alt to this anchor.

1. ...

Now let’s create some styles for those classes within our CSS. Below our typography
rule set, let’s create a new section of the CSS file for buttons.

Lesson 4 · Opening the Box Model 71

To begin let’s add the btn class and apply some common styles that can be shared
across all buttons. We’ll want all of our buttons to have a 5-pixel border-radius.
They should be displayed as inline-block elements so we can add padding around
all four sides without issue; we’ll remove any margin.

1. /*

2. ==

3. Buttons

4. ==

5. */

6.

7. .btn {

8. border-radius: 5px;

9. display: inline-block;

10. margin: 0;

11. }

We’ll also want to include styles specific to this button, which we’ll do by using the
btn-alt class. Here we’ll add a 1-pixel, solid, gray border with 10 pixels of padding on
the top and bottom of the button and 30 pixels of padding on the left and right
of the button.

1. .btn-alt {

2. border: 1px solid #dfe2e5;

3. padding: 10px 30px;

4. }

Using both the btn and btn-alt classes on the same <a> element allows these
styles to be layered on, rendering all of the styles on a single element.

7. Because we’re working on the home page, let’s also add a bit of padding to the
<section> element that contains our <a> element with the classes of btn and
btn-alt. We’ll do so by adding a class attribute value of hero to the <section>
element, alongside the container class attribute value, as this will be the leading
section of our website.

1. <section class="hero container">

2. ...

3. </section>

72 Learn to Code HTML & CSS

Next we’ll want to create a new section within our CSS file for home page styles,
and, once we’re ready, we’ll use the class of hero to apply padding around all four
sides of the <section> element.

1. /*

2. ==

3. Home

4. ==

5. */

6.

7. .hero {

8. padding: 22px 80px 66px 80px;

9. }

Our website is starting to come together, especially the home page, as shown in Figure 4.8.

Figure 4.8 Our Styles Conference home page, taking shape after a few updates

The source code for the exercises within this lesson can be found at
http://learn.shayhowe.com/html-css/opening-the-box-model/.

http://learn.shayhowe.com/html-css/opening-the-box-model/

Lesson 4 · Opening the Box Model 73

The Universal Selector

In the first step of this exercise we were introduced to the universal selector. In CSS the
asterisk, *, is the universal selector, which selects every element. Rather than listing every
single element imaginable, we can use the asterisk as a catch-all to select all elements
for us.

The :before and :after pseudo-elements also mentioned in this step are elements
that can be dynamically generated with CSS. We’re not going to be using these elements
within our project; however, when using the universal selector it’s a good practice to also
include these pseudo-elements in case they should ever appear.

Summary
Take a second and pat yourself on the back. I’ll wait.

Learning all the different parts of the box model is no small feat. These concepts, although
briefly introduced, take quite a bit of time to fully master, and we’re on the right path
toward doing so.

In brief, within this lesson we talked about the following:

• How different elements are displayed

• What the box model is and why it’s important

• How to change the size, including the height and width, of elements

• How to add margin, padding, and borders to elements

• How to change the box sizing of elements and the effects this has on the box model

Now that we have a better understanding of how elements are displayed and sized, it’s
time to move into positioning these elements.

Index

- (hyphen), 38
; (semicolon), 8, 274
: (colon), 8
. (period), 10
{ } (curly brackets), 8, 9, 274
& (ampersand), 31
(hash sign), 10, 46
< > (angle brackets), 2
% unit notation, 51

A

<a> element, 29
absolute lengths, 50
absolute paths, 30
absolute positioning, 96–98
absolute value, 96–98
action attribute, 205
Adobe Kuler, 47
alert message example, 136–137
alignment

float values and, 114
images, 185–186
list items, 170
text, 114, 121, 122
vendor prefixes, 278–279
vertical, 91

alpha channels, 48
alt attribute, 179, 271
alt (alternative) text, 179
alternative (alt) text, 179
ampersand (&), 31
anchor elements, 29
anchor links, 3, 29
anchor tags, 3
angle brackets < >, 2
<article> element, 25
<aside> element, 26, 76, 78
aspect ratio, 180
attributes

for, 213
action, 205
alt, 179, 271

audio, 189–190
autoplay, 189, 191
charset, 5
checkbox, 209
cite, 129, 130–131
class, 3, 10
cols, 208
colspan, 237–238
container class, 244
controls, 189, 191
datetime, 255
described, 3–4
disabled, 215
headers, 234
height, 180–181
hidden, 215
hidden, 215
href, 3, 11, 12, 30
id, 3, 10, 213, 234, 256
ID, 172
intro ID value, 267
loop, 189, 191
method, 205
multiple, 210
name, 205, 208, 210
placeholder, 216
poster, 192
preload, 189–190, 191
rel, 11
required, 216
reversed, 158–160
rows, 208
rowspan, 237–238
scope, 232, 234, 255
seamless, 194–195
selected, 210
src, 3, 179, 189, 190
start, 159
target, 31
type, 190, 205–208
value, 160, 208
width, 180–181

audio, 189–191

282 Learn to Code HTML & CSS

audio controls, 192
audio fallbacks, 190–191
audio file formats, 193
audio files, 189–191
<audio> element, 189–191
autoplay attribute, 189, 191

B

 element, 21–22
background color, 37–38, 242–243
background images, 134–137

background-position, 155–156
centering, 135
code example, 136–137, 152–153
considerations, 134
hyperlink paths, 134
vs. image elements, 183
multiple, 152–153
positioning, 135
repeating, 134
shorthand values, 134, 136, 152
specifying size for, 153–155
specifying surface area, 155–156

background pattern, 180
background property, 133, 134, 142, 164, 183
background-clip property, 155–156
background-color property, 133
background-image property, 134, 142, 183
background-origin property, 155–156
background-position property, 135
background-repeat property, 134
backgrounds, 132–156

color, 133, 137
considerations, 132
fallback options, 133
new CSS properties, 153–156
practice example, 137–141
transparent, 133

background-size property, 153–155
block elements, 18, 59
block positioning images, 182
block values, 54, 182
block-level elements, 29, 54, 55, 182
<blockquote> element, 128, 130–131
<body> element, 4, 5
bold text, 21–22
border property, 62–64

border-box value, 67, 155–156
border-collapse property, 238–239, 241, 243
borders

adding to rows, 241–242
box model, 62–64
images, 182
padding and, 60
radius, 63–64
sides, 63
size, 62–63
styles, 62–63
tables, 238–242

border-spacing property, 240–241
box model, 53–73
box model

border box, 66
borders, 62–64
box sizing, 64–67
content box, 65
described, 56
element display, 54–55
element height, 57–58, 59
element padding, 60–62
element width, 57–58
margins, 59–62
padding box, 66
practice exercise, 68–73
working with, 56–67

boxes
content, 65
padding, 66
sizing, 64–67

box-shadow property, 116
box-sizing property, 64–67
braces { }, 8, 9
browsers

audio file formats, 190, 193
Chrome, 65, 67–68
cross-browser compatibility, 12–13
cross-browser testing, 13
developer tools, 67–68
Firefox, 65
Google Chrome, 65, 67–68
Internet Explorer, 65
Safari, 65
vendor prefixes, 65, 279
video file formats, 193

<button> element, 211

Index 283

buttons
background color, 43
font size, 43
forms, 208–209, 211
radio, 208–209
styles, 138–139

C

capitalize value, 116
<caption> element, 234
captions

figures, 202
table, 234

cascade, 37–38
cascading properties, 37–38
Cascading Style Sheets. See CSS
cells, combining, 237–238
cf class, 83
characters

encodings, 2
hexadecimal colors, 46, 277
special, 28

charset attribute, 5
check boxes, 209
checkbox attribute, 209
Chrome browser, 65, 67–68
citations, 128, 129, 130–131
cite attribute, 129, 130–131
<cite> element, 128, 130–131
class attribute, 3, 10
class selectors, 10, 38
class values, 270
classes

multiple, 42–43
names, 275
pseudo-classes, 106
tips for, 275, 276
values, 275

clear property, 80
clearfix, 83
clearfix class, 83
clearing floats, 80
closing tags, 3
code validation, 6
coding best practices, 266–281

CSS, 273–280
general guidelines, 281

HTML, 267–272
reusable layouts, 90–94

col value, 232
colon (:), 8
color

background, 37–38, 133, 137, 242–243
borders, 62
gradients, 146–147
hexadecimal values, 46–47, 277
HSL/HSLa, 49–50
keyword, 44–45
links, 137–138
margins and, 62
opacity, 48
padding and, 62
RGB/RGBa, 48
sRGB, 44
in tables, 242–243
text, 100, 138
transparent, 48

color channels, 46–50
color property, 100
color stops, 146–147
color values, 42–50
color wheel, 47
cols attribute, 208
colspan attribute, 237–238
comments

in CSS, 19, 273, 274
in HTML code, 19

contain keyword value, 154
container class, 69
container class attribute, 252
content, 74–98. See also media

absolute positioning, 96–98
centering, 69
embeddable, 3
grouping, 25
positioning with floats, 75–86
positioning with inline-block, 87–89
related, 26
relative positioning, 95–96
reusable layouts, 90
self-contained, 25
semantic decisions and, 25, 267–268
separating from style, 271
source for, 3
in tables, 234–235
wrapping, 79

284 Learn to Code HTML & CSS

content boxes, 65
content-box value, 65, 155–156
controls attribute, 189, 191
cover keyword value, 154
creative works, citing, 128
cross-browser compatibility, 12–13
cross-browser testing, 13
CSS (Cascading Style Sheets)

best practices, 273–280
calculating specificity, 38–39
cascading properties, 37–38
class names/values, 275
code validators, 6
color values, 42–50
comments in, 19, 273, 274
considerations, 2
described, 2, 36
dropping units from zero values, 278
good vs. bad code examples, 273–280
length values, 50–52
modularized styles, 280
multiple lines and, 274
property values, 44–52
referencing, 11–12
reusable layouts, 90
shorthand alternatives. See shorthand values
spacing and, 274
terminology, 7–9
units of measurement, 50–52
vendor prefixes, 278–279

.css extension, 11
CSS pseudo-classes, 106
CSS resets, 12–15, 28
CSS selectors

IDs and, 275
tips for, 275

CSS3 gradient generators, 146
CSS3 gradients, 146
curly brackets { }, 8, 9, 274

D

data, table, 231–232, 254
datetime attribute, 255
<dd> element, 160–161
description lists, 160–161
developer tools, 67–68

dialogue citation, 129
dialogue quotation, 129
disabled attribute, 215
display property, 54–55, 167, 182
display value, 77, 169
<div> element, 18–19, 25, 272
divisions, 18–19, 25
<dl> element, 160–161
<!DOCTYPE html> declaration, 4, 5
Dreamweaver, 4
drop-down lists, 209–210
<dt> element, 160–161

E

elements
absolute positioning, 96–98
block-level, 18, 29, 54, 55
borders, 62–64
classifying, 3
described, 2
displaying, 54–55
floating, 76
height of, 57–58, 59
hiding, 55
identifying, 3
indenting, 5
inline, 18, 54, 55
margins, 59–62
nested, 5
padding, 60–62
relative positioning, 95–96
self-closing, 5
text-based, 20–23
width of, 57–58

em unit notation, 51
em units, 51
 element, 22–23, 276
email addresses

linking to, 30–31
validation, 216

Eric Meyer’s reset, 12, 13
error message styles, 216
external citation, 130–131
external quotation, 130
external style sheets, 11, 12

Index 285

F

fallback options
audio, 190–191
backgrounds, 133
fonts, 101
video, 191, 193

fields, text, 205–207
fieldsets, 214
<figcaption> element, 202
<figure> element, 201–202
figures, 201–202
file input, 212
files

adding to forms, 212
audio, 189–191
comments, 19
CSS, 273, 275, 278
external, 4, 24
gradient image, 142
links to, 24
organizing, 19

Firefox browser, 65
:first-of-type pseudo-class selector, 261
float property, 75, 77, 79, 114, 167, 182
floating

clearing floats, 80
considerations, 95
containing floats, 80–83
content, 75–86
images, 182–183
lists, 167–168

font families, 101
font property, 104
font variants, 102
@font-face at-rule, 124
font-family property, 101, 124
fonts

bold, 102–103
considerations, 99, 125
described, 100
embedded, 99, 124–127
example code, 105–106
fallback options, 101
Google Fonts, 125
italics, 102
licensing issues, 125
practice exercise, 106–113

properties, 101–113
shorthand values, 104
size, 51, 101
styles, 102
vs. typefaces, 100
web-safe, 123–124
weights, 102–103

font-size property, 101
font-style property, 102
font-variant property, 102
font-weight property, 102–103, 126, 127
<footer> element, 26, 28
footers, 26, 235
for attribute, 213
<form> element, 205
forms, 204–228

adding files to, 212
adding to pages, 205
buttons, 208–209, 211
check boxes, 209
disabling elements/controls, 215
drop-down lists, 209–210
example code, 217–219
fieldsets, 214
hidden inputs, 212
initializing, 205
input attributes/values, 215–217
labels, 213
legends, 214–215
login, 217–219
multiple selections, 210
organzing elements in, 212–215
overview, 204
placeholder controls, 216
practice example, 219–226
required values, 216
text fields, 205–207
textareas, 208
validation, 216

G

gif format, 180
Google Chrome browser, 65, 67–68
Google Fonts, 125
gradient backgrounds, 142–151

changing direction of, 143–144
color stops, 146–147

286 Learn to Code HTML & CSS

considerations, 142
CSS3, 146
example code, 147–148
linear, 142–144
practice example, 148–151
radial, 145–146
vendor prefixes, 142

gradients
background. See gradient backgrounds

grid class attribute, 91, 92, 171, 195, 220, 252.
group class, 81

H

<h> element, 5, 20, 24
hash sign (#), 10, 46
<head> element, 4, 5, 11, 24
<header> element, 24, 27
headers

table, 232–234, 235
text, 24, 27

headers attribute, 234
headings, 5, 20
height attribute, 180–181
height property, 56, 58, 59, 180
hexadecimal colors, 46–47, 277
hexadecimal values, 100, 133, 147
hidden attribute, 215
hidden inputs, 212
hiding elements, 55
:hover pseudo-class, 106
href attribute, 3, 11, 12, 30
hsl() function, 49
HSLa value, 133
HSL/HSLa colors, 49–50
HTML (HyperText Markup Language), 2–4
HTML code

best practices, 267–272
class values, 270
comments in, 19
considerations, 2
described, 2
divisions, 18–19
document structure, 268–269
example of basic code, 4–5
good vs. bad code examples, 267–272

headings, 20
hyperlinks. See hyperlinks
ID values, 270
inline styles and, 271
paragraphs, 21
refactoring code, 272
referencing CSS in, 11–12
removing code, 272
reusable layouts, 90
semantics in, 18, 267–268
spans, 18–19
standards-compliant markup, 267
structural elements, 23–29
syntax organization, 269–270
terminology, 2–4
text-based elements, 20–23
validators, 6
version, 4

HTML document structure, 4–7
.html extension, 4
<html> element, 4, 5
hyperlink reference. See href
hyperlinks

adding, 32–35
anchor, 3, 29
background images, 134
to citations, 128, 129
colors, 137–138
creating, 29–35
described, 29
to email addresses, 30–31
navigation, 24
opening links in new window, 31
to other pages of website, 30
to parts of same page, 32
to quotations, 129
specifying, 3

HyperText Markup Language. See HTML
hyphen (-), 38

I

<i> element, 22–23
icons, 180
id attribute, 3, 10, 213, 234, 256
ID attributes, 172
ID selectors, 10, 38, 39

Index 287

ID values, 270
<iframe> element, 193–195
image elements, 183
image formats, 180
images, 179–188

adding to pages, 179
alignment, 185–186
alt attribute, 271
aspect ratio, 180
background. See background images
borders, 182
distorted, 180
embedded, 179
floating, 182–183
flush left/right, 182–183
margins, 182–183
padding, 182
positioning, 181–183
practice exercise, 183–188
sizing, 180–181
spacing, 182–183

 element, 179, 181, 183
indenting text, 115
index.html file, 15
inline elements, 18
inline frames, 193–195
inline styles, 11, 271
inline value, 54, 166–167
inline-block elements

positioning content with, 87–89
removing spaces between, 88–89
sizing, 59
space between, 55

inline-block value, 55, 166–167
inline-level elements, 59
<input> element, 205
inside property value, 165, 166
internal style sheets, 11
Internet Explorer, 65
intro ID attribute value, 267
italicized text, 22–23, 102

J

jpg format, 180

K

key selector, 40
keyword color values, 44–45, 47

L

<label> element, 213
labels, 213
:last-child pseudo-class selector, 170, 241, 253
:last-of-type pseudo-class selector, 261
leading, 103–104
legends, 214–215
length values, 50–52
letter spacing, 117
letter-spacing property, 117
 element, 158
linear gradients, 142–143
linear-gradient () function, 143, 149
line-height property, 103–104
<link> element, 11–12, 125–126
links

adding, 32–35
anchor, 3, 29
background images, 134
to citations, 128, 129
colors, 137–138
creating, 29–35
described, 29
to email addresses, 30–31
navigation, 24
opening links in new window, 31
to other pages of website, 30
to parts of same page, 32
to quotations, 129
specifying, 3

list item markers
floating and, 167
setting content of, 163–165
using images as, 164–165

list items
alignment, 170
styling, 163–166

lists, 157–177
changing values in, 160
considerations, 157
description, 160–161

288 Learn to Code HTML & CSS

drop-down, 209–210
floating, 167–168
horizontally displaying, 166–169
navigational, 168–169
nesting, 162–163
numbered, 158–160
ordered, 158–160
overview, 157
practice example, 169–176
reverse order, 158–160
sample code, 168–169
unordered, 158

list-style property value, 166
list-style-position property, 165–166
list-style-type property, 163–165
login forms, 217–219
loop attribute, 189, 191
lowercase value, 116

M

“magic corners,” 144
mailto:, 31
main.css file, 12
margin property, 59–62, 182–183
margins

images, 182–183
overview, 59–62

measurement, units of, 50–52
media, 178–203. See also content

audio, 189–191
considerations, 178
embedded, 193
images. See images
inline frames, 193–195
video, 191–193

media player, 192
<meta> element, 5
method attribute, 205
mp3 format, 190
multiple attribute, 210

N

name attribute, 205, 208, 210
<nav> element, 24
navigation menus, 33–34, 168–169

navigational links, 24
navigational lists, 168–169
nested elements, 5
nesting lists, 162–163
none value, 55
Normalize.css, 12–13
Notepad++, 4
:nth-child pseudo-class selector, 242–243
number sign (#), 10, 46
numbered lists, 158–160

O

offset class, 96
ogg format, 190
 element, 158–160
:only-of-type pseudo-class selector, 261
opacity, 48
opening tags, 3
<option> elements, 208
ordered lists, 158–160
outside property value, 165

P

<p> element, 5, 21
padding, 60–62, 66, 182
padding property

box model, 60–62, 66
tables, 260–262

padding-box value, 66, 155–156
pages. See web pages
paragraphs, 21
paths

absolute, 30
hyperlink, 134
relative, 30

pattern, background, 180
percentages, 51
performance, 276
period (.), 10
photographs, 180
pixels, 50
placeholder attribute, 216
placeholder controls, 216
png format, 180
position property, 95–98

Index 289

poster attribute, 192
pound sign (#), 10, 46
preload attribute, 189–190, 191
properties

background, 133, 134, 142, 164, 183
background-clip, 155–156
background-color, 133
background-image, 134, 142, 183
background-origin, 155–156
background-position, 135
background-repeat, 134
background-size, 153–155
border, 62–64
border-collapse, 238–239, 241, 243
border-spacing, 240–241
box-shadow, 116
box-sizing, 64–67
cascading, 37–38
cascading properties, 37–38
clear, 80
color, 100
described, 8
display, 54–55, 167, 182
float, 75, 77, 79, 114, 167, 182
font, 104
font-based, 101–113
font-family, 101, 124
fonts, 101–113
font-size, 101
font-style, 102
font-variant, 102
font-weight, 102–103, 126, 127
height, 56, 58, 59, 180
letter-spacing, 117
line-height, 103–104
list-style, 166
list-style-position, 165–166
list-style-type, 163–165
margin, 59–62, 182–183
padding, 60–62, 66, 260–262
position, 95–98
text, 113–123
text-align, 114, 244–247
text-based, 101–123
text-decoration, 114
text-indent, 115
text-shadow, 115–116

text-transform, 116
vertical-align, 244
width, 57–58, 180
word-spacing, 117

prose citation, 129
prose quotation, 129
pseudo-class selectors, 261
px unit notation, 50

Q

<q> element, 128, 129
quotations, 128, 129, 130

R

radial gradients, 145–146
radial-gradient() function, 145
radio buttons, 208–209
rel attribute, 11
relative lengths, 51
relative paths, 30
relative positioning, 95–96
relative value, 95–96
required attribute, 216
reusable layouts, 90–94
reversed attribute, 158–160
rgb() function, 48
rgba() function, 48
RGB/RGBa colors, 48
root directory, 12
row value, 232
rows

adding borders to, 241–242
gradient background, 148
styles, 139–140
table, 230

rows attribute, 208
rowspan attribute, 237–238

S

Safari browser, 65
scope attribute, 232, 234, 255
seamless attribute, 194–195
<section> elements, 25, 27, 76, 140, 149
<select> element, 210

290 Learn to Code HTML & CSS

selected attribute, 210
selectors

additional, 11
calculating specificity, 38–39
class, 10, 38
combining, 40–42
described, 8
ID, 10, 38, 39
spaces within, 41
specificity within, 42
type, 9, 38
working with, 9–11

semantic elements, 267–268
semantics, 18, 267–268
semicolon (;), 8, 274
shorthand values

background images, 134, 136, 152
borders, 62
example of, 276–277
fonts, 104
hexadecimal color values, 46, 277
list-style property, 166
margins, 60–61
padding, 60–61
tips for, 276

<small> element, 28
<source> elements, 190–191
spaces

between inline-block elements, 88–89
within selectors, 41

spacing
borders, 240–241
CSS and, 274
images, 182–183
inline-block elements and, 55

 element, 18–19
spans, 18–19
special characters, 28
specificity points, 38, 42
specificity weight, 38–39, 42
src attribute, 3, 179, 189, 190
sRGB color, 44
start attribute, 159
striping, 242–243
 element, 21–22
style sheets, 11. See also CSS

styles. See also CSS
borders, 62–63
buttons, 138–139
error messages, 216
fonts, 102
layering, 42–43
list items, 163–166
multiple classes, 42–43
rows, 139–140
separating content from, 271
tables, 248–252, 260–262

Styles Conference website. See websites
Sublime Text, 4
submit button, 211

T

table data, 231–232, 254
<table> element, 230
tables, 229–265

aligning text in, 244–247
borders, 238–242
captions, 234
color in, 242–243
combining cells, 237–238
contents of, 235–236
creating, 230–234
footers, 235
headers, 232–234, 235
overview, 229
padding, 260–262
practice example, 252–264
rows, 230
striping, 242–243
structure, 234–238
styling, 248–252, 260–262
table body, 235

tags
anchor, 3
closing, 3, 190, 211
described, 3
end, 208
opening, 3, 190, 211
start, 208

target attribute, 31
<tbody> element, 235
<td> element, 231–232, 234

Index 291

terminology
CSS, 7–9
HTML, 2–4

text
aligning, 114, 121–122
aligning in tables, 244–247
bold, 21–22, 102–103
citations, 128, 129, 130–131
color, 100, 138
example code, 118–119
indenting, 115
inline changes, 116
italicized, 22–23, 102
leading, 103–104
letter spacing, 117
line height, 103–104
practice exercise, 119–123
properties, 113–123
quotations, 128, 129, 130
shadows, 115–116
small caps, 102
underlined, 114, 119–120
word spacing, 117

text decoration, 114
text editors, 4
text fields, 205–207
text-align property, 114, 244–247
<textarea> element, 208
textareas, 208
text-based elements, 20–23
text-decoration property, 114
text-indent property, 115
text-shadow property, 115–116
text-transform property, 116
TextWrangler, 4
<tfoot> element, 235
<th> element, 232, 234
<thead> element, 235
<time> element, 255
<title> element, 5
<tr> element, 230
tracking, 117
transparency, 48
transparent backgrounds, 133

.txt extension, 4
type attribute, 190, 205–208

type selectors, 9, 38
typeface weights, 103
typefaces

considerations, 99, 125
described, 100
vs. fonts, 100
licensing issues, 125

typography, 99–131

U

 element, 158
underlined text, 114, 119–120
units of measurement, 50–52
unordered lists

described, 158
practice example, 169–176
sample code, 168–169

uppercase value, 116
url () function, 134
URLs, 193

V

validation
code, 6
email, 216
forms, 216
standards-compliant markup, 267

value attribute, 160, 208
values

described, 8–9
vendor prefixes, 65, 142, 278–279
vertical alignment, 91
vertical margins, 60
vertical padding, 60
vertical-align property, 244
video, 191–193
video controls, 192
video fallbacks, 193
video file formats, 193
video hosting websites, 193
video player, 193
<video> element, 191–193
Vimeo embedded video, 193

292 Learn to Code HTML & CSS

W

wav format, 190
web browsers

audio file formats, 190, 193
Chrome, 65, 67–68
cross-browser compatibility, 12–13
cross-browser testing, 13
developer tools, 67–68
Firefox, 65
Google Chrome, 65, 67–68
Internet Explorer, 65
Safari, 65
vendor prefixes, 65, 279
vendor prefixes and, 65, 279
video file formats, 193

web pages
adding forms to, 205
adding images to, 179
building structure, 23–29
links on, 32

Webkit, 65
web-safe fonts, 123–124
websites

adding audio, 189–191
adding container class to, 69
adding content. See content
adding CSS to, 13–15
adding figures/captions, 201–202

adding forms. See forms
adding images. See images
adding inline frames, 193–200
adding links, 32–35
adding multiple pages, 32–35
adding navigation menu, 33–34
adding new pages, 34
adding structure to, 26–29
adding video, 191–193
adjusting box size, 68–69
creating, 6–7
links to pages on, 30
positioning images, 181–183
reusable layouts, 90–94
video hosting, 193

width attribute, 180–181
width property, 57–58, 180
word spacing, 117
word-spacing property, 117

Y

YouTube videos, 193

Z

zero values, 278

Index 293

	Contents
	Introduction
	LESSON 4 Opening the Box Model
	How Are Elements Displayed?
	What Is the Box Model?
	Working with the Box Model
	Developer Tools
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

